
Global Alignment
Algorithms in BioInformatics

Mandatory Project 1
Magnus Erik Hvass Pedersen (971055)

Daimi, University of Aarhus
September 2004

1 Introduction

The purpose of this report is to verify attendance of the author to the Algorithms
in BioInformatics course at the department of computer science, University of
Aarhus.

The reader is assumed to be familiar with the problem description as well
as the course litterature, and [1] in particular.

2 Affine Gap Weights

Calculating the affine gap weights can be done using the recurrences in [1, p.
244]. First we have:

V (0, 0) = E(0, 0) = F (0, 0) = 0

And when the end gaps are not free, the general base case for i, j > 0, is as
follows:

V (i, 0) = E(i, 0) = −Wg − iWs

V (0, j) = E(0, j) = −Wg − jWs

where Wg > 0 is the gap-weight and Ws ≥ 0 is the space-weight. The overall
recurrence is defined as:

V (i, j) = max [E(i, j), F (i, j), G(i, j)]

with the sub-recurrences being:

E(i, j) = max [E(i, j − 1), V (i, j − 1)−Wg]−Ws

F (i, j) = max [F (i− 1, j), V (i− 1, j)−Wg]−Ws

G(i, j) = V (i− 1, j − 1) + s(S1(i), S2(j))

Note that G(i, j) is not a recurrence, but the other two, E and F , are both re-
currences that must have their own tables in the dynamic programming method.

The values or scores of comparing different characters are defined in a score
matrix, so that s(S1(i), S2(j)) is this number for comparing characters S1(i)
and S2(j). We could similarly have that the weight for each space Ws, was a
comparison such as s(S1(i), ), but this is not suggested by the score matrix
given in the project formulation.

1



3 Constant Gap Weights

If we remove the influence of the space-weight by setting Ws = 0 in the above,
so that gaps are weighted only with the constant Wg, we then have the base
case:

V (i, 0) = E(i, 0) = −Wg

V (0, j) = E(0, j) = −Wg

And now, we only have one recurrence:

V (i, j) = max [E(i, j), F (i, j), G(i, j)]

Where E and F are no longer recurrences themselves:

E(i, j) = V (i, j − 1)−Wg

F (i, j) = V (i− 1, j)−Wg

G(i, j) = V (i− 1, j − 1) + s(S1(i), S2(j))

Which for E’s case, can be seen from the following:

E(i, j) = max [E(i, j − 1), V (i, j − 1)−Wg]
= max [max [E(i, j − 2), V (i, j − 2)−Wg] , V (i, j − 1)−Wg]
= max [E(i, j − 2), V (i, j − 2)−Wg, V (i, j − 1)−Wg]
= · · ·
= max [E(i, 0), V (i, 0)−Wg, V (i, 1)−Wg, · · · , V (i, j − 1)−Wg]
= max [V (i, 0), V (i, 0)−Wg, V (i, 1)−Wg, · · · , V (i, j − 1)−Wg]
= max [V (i, 0), V (i, 1)−Wg, · · · , V (i, j − 1)−Wg]
= max [V (i, 0), V (i, 1)−Wg, · · · , V (i, j − 1)−Wg]

And similarly for F , so when we are ultimately only interested in V (i, j), and
V (n, m) in particular, we find that E(i, j − 1) is included in V (i, j − 1) when
Ws = 0. Similarly we have that F (i − 1, j) is included in V (i − 1, j). It will
therefore suffice with only one recurrence table for the dynamic programming
method, namely that of V (i, j).

4 Trace-Back

Computing the trace-back pointers is done as usual, in that a corresponding
pointer is added for each of E, F , and G that equals V for that cell. If this is
the case for E, then a left-pointer is added, for F an up-pointer is added, and
for G a diagonal pointer is added.

After the entire table has been calculated, the pointers are then traversed in
a backwards manner, outputting the character from S2 and a space instead of
the character from S1 if a cell points left, and if pointing up, a space is printed

2



instead of the character from S2, and the character from S1 is then printed.
Finally, if the pointer is diagonal, then both characters are printed, regardless
of whether they match or not.

5 Implementation

Implemented in Microsoft Visual C++ .NET, the base-class for an alignment
algorithm is LAlign. The sub-classes for quadratic- and linear-space algorithms
are then LAlignQuadraticSpace and LAlignLinearSpace, which implement
the algorithm for computing string similarity with a space-weight of 1, similar
to [1, p. 227].

The linear-space algorithm does not work correctly, and is therefore not
extended to the cases of constant and affine gap-weights. The quadratic-space
counterparts are implemented however, and can be found in LAlignQSConstantGap
which is further extended in LAlignQSAffineGap.

The main-program that communicates with the user and iterates the input
sequences, writes the output and so forth, is found in the file bioinf align.cpp
and the project does indeed compile to a Microsoft Windows executable named
bioinf align.exe.

5.1 Virtual Functions

The most interesting usage of virtual functions for specializing the behaviour of
sub-classes, is found in the LAlignQuadraticSpace-class with the functions for
calculating the up-, left-, and diagonal scores of a cell V (i, j), and for initializing
the first row and column of the dynamic programming table. These functions are
then specialized in the LAlignQSConstantGap and LAlignQSAffineGap classes.

5.2 Trace-Back Table

The cells in the trace-back table are char-typed, as we only need 3 bits to store
whether the pointer exists at all, is pointing up, left, or diagonally. The proper
bits are then added with the binary-or operand, and retrieved with binary-and.

When traversing the track-back table in reverse order, starting at cell (n, m),
the different kinds of pointers are prioritized so that diagonal pointers are
favoured over up-pointers, which again precede the left-pointer – again, this
is necessary as there may be several optimal alignment paths in the table.

5.3 File Formats

The class for the score-matrix is LScoreMatrix, and is read from a file in socalled
Phylip format, from which the alphabet is also implicitly defined. If unknown
characters are encountered from the input sequences, they are replaced with
the first character defined in the score-matrix. Internally to the program, all
characters are in lower-case, so an alphabet can not be case-sensitive.

3



The user can choose between file-formats for the input- and output-sequence
files, as the strings that the user enters are merely passed to the SEQIO func-
tions, which are capable of handling GenBank, FASTA, etc.

Output files measuring time usage, scores, gap-lengths, and number of gaps,
are created in a format compatible with gnuplot’s command plot, which is used
for creating the figures below.

6 Testing

There is no explicit error- or exception-handling, but the assert()-function is
used in the debug-build of the program, so that erroneous conditions are caught
during development.

During development, small hand-written sequences were tested with the
intention of uncovering implementation errors. For the quadratic-space algo-
rithms, no further errors have been encountered.

For some unknown reason, running the release-build in a command-shell,
prints the wrong scores, whereas running the same build from the MS Visual
Studio environment, prints the correct scores.

7 Experimental Results

Using the given score-matrix (score01.txt) and sequence-files (human.seq and
mouse.seq, both in GenBank format), with gap-weight Wg = 10 and space-
weight Ws = 2, and not accepting sequence-pairs where n ·m > 2.5e7, yields 80
processed sequence pairs out of 117 in total.

The algorithm with affine gap-weight scores a total of 1294508, with a total
of 20850 gaps, totalling a gap-length of 92032. This makes for an average of
260.6 gaps per sequence with an average gap-length of 4.414. The time-usage is
illustrated in figure 1, and underlines the analysis in [1], that the algorithm is
indeed O(n ·m). The somewhat jagged tendency of the graph, is probably due
to disk-cache usage, imposed by the large additional memory requirements for
the E and F tables.

The algorithm with constant gap-weight scores a total of 1251561, with a
total of 12986 gaps and a total gap-length of 87118. The average is therefore
162.3 gaps per sequence, and 6.71 in average gap-length. So having Ws = 0 and
Wg = 10 means that there are substantially fewer, but somewhat longer gaps,
than with the affine algorithm having a space penalty of Ws = 2. Note however,
that the overall similarity score is higher when using affine gap-weights, even
though there are more gaps.

The time-usage for the constant gap-weight algorithm, is shown in figure 2,
and again supports the O(nm) analysis.

The memory usage has not been explicitly tested, but it appears obvious
from the source-code, that the allocated arrays are quadratic in their space-
usage. (Naturally intuition on these matters may fail.)

4



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5e+006 1e+007 1.5e+007 2e+007 2.5e+007

T
im

e/
m

se
c

n ·m

Figure 1: Affine gap-weight, relationship between length of input sequences
(n ·m) and time usage, documenting the O(nm) time-complexity.

The similarity score with affine and convex gap-weights are shown in figures 3
and 4, respectively.

Watching the output of the program, a substantial amount of time is spent
on memory allocation and de-allocation. A solution would be to only allocate
new aligning-objects when the lengths of the strings have grown beyond what
is allocated, instead of allocating (and then deleting) a new object for each
sequence-pair. The LAlign-object should then keep track of its allocated size as
well as the size required by the current strings. See appendix A for an example
of two aligned sequences.

References

[1] Dan Gusfield: Algorithms on Strings, Trees, and Sequences, Cam-
bridge University Press, 1999, ISBN 0-521-58519-8

5



0

200

400

600

800

1000

1200

1400

1600

0 5e+006 1e+007 1.5e+007 2e+007 2.5e+007

T
im

e/
m

se
c

n ·m

Figure 2: Constant gap-weight, relationship between length of input sequences
(n ·m) and time usage, documenting the O(nm) time-complexity.

A Sequence Alignment

The HUMOTNPI sequence from human.seq, and MUSOXYNEUI from mouse.seq,
aligned with affine gap-weight (Wg = 10 and Ws = 2).

------------------------------------------------------------
ggatccagcacctcttctggtcgccaaggaaacctgcgtgcacaaatgtacacacacaaa

------------------------------------------------------------
attaaaattgaaatgcaaaaactgttcccaaaatgtactgctaccatcatgcgggggact

------------------------------------------------------------
tgccccacccaacgtcgctcacacactaggcaagtactctgctactggggctgcatgtaa

------------------------------------------------------------
caccttcccatgcagacctatgcagacctgcagcccaaacctgaaatgtacccagagcct

------------------------------------------------------------
gcccaacctgattgcaccaaaatgggcgaaccatcatatgtggcccacctgagaagggta

------------------------------------------------------------
tgaccttggcacaaatggccttgcctgtagcctgaggccacctgttggccacactccagc

6



0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120

Sc
or

e

Sequence no.

Figure 3: Affine gap-weight, similarity score for each sequence-pair.

-----------------------------gga---t------c-----------------
agtctgatggcccactgtcctctcaaacaggagtctaggcacctagtgtggtagtggata

-ctg----c--c-----agag-c-----c---t------cc------tc----cca----
actaaactcagcatttgggagacagaagcagatggagcgctgtgagttcaaggccagcct

--cct--------gg----ag----ggg---t---c-cc------a-------------g
ggtctacacagcaggttctaatacagagttttaaatactagtgtaattttccttttgctg

c-g----tc---c-----------ac-----c--ttc-c-ctgcccca------g---c-
taatttttctttctttttattttaatttggtctgttaactctgttttggttttgatctct

-cc----ccctcc--t-----c------gaggtactggga-g-g--c------t------
actgagactttgttttacgggctagttagaagagctgaggtgcattcagagattgaacaa

g--g--------------ata-aagtct----tcggc-t--gggcca-cac-ccca----
gacgccatctttttccccatctaagtttcaggtccatgtaagggctccctcactcactgg

ccccaaatt--c---tccc-----------tgtcc--------ca---cc---cta----
ccctatcctgccttattctgagatattggatatctgtgaaaaacagctcctggctagggc

gtg-------------ccca--------ggccaccc-cggcct-gctcccttccgcaagg
gcacctccaacccctcccaagtctctctagcctcttgtagcctaggccaccccttccagg

7



0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

Sc
or

e

Sequence no.

Figure 4: Constant gap-weight, similarity score for each sequence-pair.

cacctcaccttctgtg-cccagaccattagccaacgcggtgaccttgaccccggcccagg
ctgcttctcttttgagttccaggtcattagcagagacgatgaccttgaccctagcccaga

ccctgctaatgaagaggaaagc-cc--gta-cgcact-cggcctgacccacggcgaccct
ccctgcaaatgaagggcctgcctctaaacagcgtggaacaatttcaccca-agagacctt

ctgtgaccaatcatactaccaacctc-ttaaacagagctccaccgacgcaatgcccaggc
ctgtgaccagtcatgctgtcaccctctttagacagtgctccaccatggcagtg-ccagac

ataaaaa----gg-ccaggcc-gagagaccgccaccagtcacggaccctggacccagcgc
ataaaaaggtcggtctgggccggagaaaccatcacctacagcggatctcaga-ct-gagc

acccgcaccatggccggccccagcctcgcttgctgtctgctcggcctcctggcgctgacc
accatcgccatggcctgccccagtctcgcttgctgcctgcttggcttactggctctgacc

tccgcctgctacatccagaactgccccctgggaggcaagagggccgcgccggacctcgac
tcggcctgctacatccagaactgccccctgggcggcaagagggctgtgctggacctggat

gtgcgcaaggtgagtc-cccagccctggtcccgcggcgctccggggagggagggacccgc
atgcgcaaggttagtctccccgaccctgtccc-tt-cccttcccgttctg-gcgatgcta

agccacaggggcgcgccccgctccggcctcgcctgagaactccaggagctgagcggattt

8



aggacca-gagaa-g---ctctcccacct-aca-gagagcattc----c--cgcaca-ct

tgacgccccgcccttgaccgcggtcgaggcccccacggcgccccagcgtctcagccccgc
tgccagccctaccaaggcctcgcgtg-ggaacccagggctttgggaagtgtta-----g-

tgtccccgcccgaactccgaaccccggaccccagcatccttgcccggcgcaccccggccg
-gctccctcttg-a---cg--ccgtgaagg-taacgacaatg-ccggagcacccactgcc

gcctcgcagggtcctccgagcgagtccccagcgccgccccgcgtcccgctcaccccgccc
-cctcgctctg-ccacagtccggattcggattg-tgcacggcg--cc-cac-ccgcatcc

gtcccccgagtgcctcccctgcggccccgggggcaaaggccgctgcttcgggcccaatat
ttccccacagtgtctcccctgcggcccgggcggcaaaggacgctgcttcggaccaagcat

ctgctgcgcggaagagctgggctgcttcgtgggcaccgccgaagcgctgcgctgccagga
ctgctgcgcggacgagctgggctgcttcgtgggcaccgccgaggcgctgcgctgccagga

ggagaactacctgccgtcgccctgccagtccggccagaaggcgtgcgggagcgggggccg
ggagaactacctgccttcgccctgccagtctggccagaagccctgcgggagcggaggccg

ct--g-cgccttgggcctctgctgcagcccgggtgagcggggcaaggcgc-tccgg-g-g
ctgcgccgccacaggcatctgctgcagcccgggtgagcaggagggggcccagcaggtgac

ccagggggaggcgggcgggggtgcggccgggattcccctgactccacctcttcctccaga
ccggcaaggagccgtcgggtttgcagctcaga--acactgac-ccatttc-tcttgcaga

cggctgccacgccgaccctgcctgcgacgcggaagccaccttctcccagcgctgaaactt
tggctgccgcacagaccccgcctgcgaccctgagtctgccttctcggagcgctg-agccc

gatggctccgaacaccctcgaagcgcgccactcgcttccc----ccatagccacccc---
actttctgggaatacctttagcgcgcttccttcgttccccatggccactgccagaaaaaa

---------ag-aaa-tggtgaaaataaaataaag---ca--ggtttttctcctctacct
aaaaaaaaaagaaaagaaaagaaaagaaaagaaaaataaagtagatttcctcttcaaact

tgactcgtgtctaagtgccagaaatggga---cgg---gg-a--gggggcattgtgggac
tgactggtgtctaattgtcggaaacgggagggaggaaaggcaccgggaacgccgtgctct

t-ggaa--gatc
tggcatcttgta

9


