
Good Parameters
for

Particle Swarm Optimization
By

Magnus Erik Hvass Pedersen
Hvass Laboratories

Technical Report no. HL1001
2010

Abstract

The general purpose optimization method known as Particle Swarm
Optimization (PSO) has a number of parameters that determine its be-
haviour and efficacy in optimizing a given problem. This paper gives a
list of good choices of parameters for various optimization scenarios which
should help the practitioner achieve better results with little effort.

Keywords: Numerical optimization, particle swarm, parameters.

1 Introduction

The general purpose optimization method known as Particle Swarm Optimiza-
tion (PSO) is due to Kennedy, Eberhart and Shi [1] [2] and works by maintaining
a swarm of particles that move around in the search-space influenced by the im-
provements discovered by the other particles.

The advantage of using an optimization method such as PSO is that it does
not use the gradient of the problem to be optimized, so the method can be
readily employed for a host of optimization problems. This is especially useful
when the gradient is too laborious or even impossible to derive. This versatility
comes at a price, however, as PSO does not always work well and may need
tuning of its behavioural parameters so as to perform well on the problem at
hand, see for example van den Bergh [3], Trelea [4], Shi and Eberhart [5] [6],
Carlisle and Dozier [7], and Clerc [8]. PSO variants are continually being devised
in an attempt to overcome this deficiency, see e.g. [9] [10] [11] [12] [13] [14]
[15] [16] [17] for a few recent additions. These PSO variants greatly increase
the complexity of the original method and we have previously demonstrated
that satisfactory performance can be achieved with the basic PSO if only its
parameters are properly tuned [18] [19].

This paper gives the practitioner a table of PSO parameters that have been
tuned for different optimization scenarios.

2 Particle Swarm Optimization

Consider a fitness (or cost, error, objective) function:

f : Rn → R

1

To minimize the fitness function f find ~a ∈ Rn so that:

∀~b ∈ Rn : f(~a) ≤ f(~b)

Then ~a is called a global minimum for the function f . It is usually not possible
to pinpoint the global minimum exactly in optimization and candidate solutions
with sufficiently good fitness are deemed acceptable for practical reasons.

In PSO the candidate solutions are the particles and are denoted ~x ∈ Rn.
They are initially placed at random positions in the search-space and moving
in randomly defined directions. The direction of a particle is then gradually
changed to move in the direction of the best found positions of itself and its
peers, searching in their vicinity and potentially discovering better positions.

Small changes to the PSO implementation can cause dramatic changes in
the behavioural parameters that cause good optimization performance. The
parameters given in this paper have been tuned for the basic PSO algorithm in
figure 1. If your PSO implementation differs from this you may need to alter it
to use the parameters listed here.

2.1 MOL Variant

A PSO simplification was presented in [18] [19] which eliminates the particle’s
own best known position ~p by setting φp = 0, and in the inner-loop of the
algorithm in figure 1 particles are picked randomly. This variant is called Many
Optimizing Liaisons (MOL) to make it easy to distinguish from the original
PSO. It is slightly easier than PSO to implement and appears to perform just
as well, if not better. A similar PSO simplification was suggested by Kennedy
[20] who called it the “social only” PSO.

3 Meta-Optimization

The PSO and MOL parameters in tables 1 and 2 have been found by way of
meta-optimization, that is, the use of another overlying optimizer to tune the
PSO and MOL parameters for different optimization scenarios. The concept is
depicted in figure 3 and described in detail in [18].

The PSO and MOL parameters have been tuned for the benchmark prob-
lems in table 3 using various dimensionalities and optimization run-lengths.
Note that the optimum has been displaced according to the values in table 4 to
avoid unintended attraction of the particles to zero which also happens to be the
global optimum of most of these benchmark problems. All 12 benchmark prob-
lems have been used in meta-optimization to yield behavioural parameters that
should work well in general, although for some of the larger meta-optimization
scenarios, e.g. the 100 dimensional cases, only the Ackley, Rastrigin, Rosenbrock
and Schwefel1-2 problems were used so as to save computation time.

Time usage for meta-optimization of the smallest problem configurations
(2 dimensions and 400 fitness evaluations) were mere seconds while up to 24
hours were used for the larger problem configurations when executed on a 1.6

2

GHz Intel CPU. Using a modern multi-core CPU would decrease the time usage
considerably and is readily supported in the source-code linked to below.

4 Example Usage

If you need to optimize a problem using few fitness evaluations, say, a 4-
dimensional problem using 100 fitness evalutions, or a 1,000-dimensional prob-
lem using 30,000 fitness evaluations, then PSO may not be the right choice
of optimizer. Instead you may want to use optimizers that were specifically
designed for short optimization runs, see e.g. Pattern Search (PS) and Local
Unimodal Sampling (LUS) in [18].

Now assume you are tasked with optimizing a series of problems in 40 di-
mensions each and you can perform 500,000 fitness evaluations on each problem,
what PSO parameters should you use? Consulting table 1 we see that this exact
scenario is not listed. The practitioner will then try with the closest match and
if that does not yield satisfactory results then try the next closest match, etc. In
this case the closest match seems to be the parameters tuned for 30 dimensions
and 600,000 fitness evaluations:

S = 95, ω = −0.6031, φp = −0.6485, φg = 2.6475

where S is the swarm-size and means there should be 95 particles in the swarm.
Similarly the MOL parameters are chosen from table 2 to be:

S = 134, ω = −0.4300, φg = 3.0469

Using these parameters in optimizing the benchmark problems results in table 5
and figures 4 and 5. In this case the results are close to the optimal fitness values
of zero which is quite satisfactory (although perhaps not a surprise since the
parameters were tuned for these problems), but if the parameters had failed then
the practitioner would perhaps try the parameters tuned for 50 dimensions and
100,000 fitness evaluations, or 20 dimensions and 400,000 fitness evaluations. If
those failed as well then the practitioner would need to either meta-optimize the
PSO (or MOL) parameters for the problem at hand or use another optimization
method.

5 Conclusion

This paper presented a table of PSO parameters that may be used by the prac-
titioner as a first choice when optimizing new problems. The parameters were
tuned (meta-optimized) to perform well on several benchmark problems with
various dimensionalities and optimization run-lengths.

3

6 Source-Code

Source-code implemented in the C# programming language and used in the
experiments in this paper can be found in the SwarmOps library on the internet
address: http://www.Hvass-Labs.org/

References

[1] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume IV, pages
1942–1948, Perth, Australia, 1995.

[2] Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. In Proceed-
ings of 1998 IEEE International Conference on Evolutionary Computation,
pages 69–73, Anchorage, AK, USA, 1998.

[3] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD the-
sis, University of Pretoria, Faculty of Natural and Agricultural Science,
November 2001.

[4] I.C. Trelea. The particle swarm optimization algorithm: convergence anal-
ysis and parameter selection. Information Processing Letters, 85:317 – 325,
2003.

[5] Y. Shi and R.C. Eberhart. Parameter selection in particle swarm optimiza-
tion. In Proceedings of Evolutionary Programming VII (EP98), pages 591
– 600, 1998.

[6] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. Proceedings of the 2000 Congress
on Evolutionary Computation, 1:84 – 88, 2000.

[7] A. Carlisle and G. Dozier. An off-the-shelf PSO. In Proceedings of the
Particle Swarm Optimization Workshop, pages 1 – 6, 2001.

[8] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on
Evolutionary Computation, 6:58 – 73, 2002.

[9] Z-H. Zhan, J. Zhang, Y. Li, and H.S-H. Chung. Adaptive particle swarm
optimization. IEEE Transactions on Systems, Man, and Cybernetics,
39:1362–1381, 2009.

[10] Z. Xinchao. A perturbed particle swarm algorithm for numerical optimiza-
tion. Applied Soft Computing, 10:119–124, 2010.

[11] T. Niknam and B. Amiri. An efficient hybrid approach based on PSO,
ACO and k-means for cluster analysis. Applied Soft Computing, 10:183–
197, 2010.

4

http://www.Hvass-Labs.org/

[12] M. El-Abda, H. Hassan, M. Anisa, M.S. Kamela, and M. Elmasry. Discrete
cooperative particle swarm optimization for FPGA placement. Applied Soft
Computing, 10:284–295, 2010.

[13] M-R. Chena, X. Lia, X. Zhanga, and Y-Z. Lu. A novel particle swarm
optimizer hybridized with extremal optimization. Applied Soft Computing,
10:367–373, 2010.

[14] P.W.M. Tsang, T.Y.F. Yuena, and W.C. Situ. Enhanced affine invariant
matching of broken boundaries based on particle swarm optimization and
the dynamic migrant principle. Applied Soft Computing, 10:432–438, 2010.

[15] C-C. Hsua, W-Y. Shiehb, and C-H. Gao. Digital redesign of uncertain
interval systems based on extremal gain/phase margins via a hybrid particle
swarm optimizer. Applied Soft Computing, 10:606–612, 2010.

[16] H. Liua, Z. Caia, and Y. Wang. Hybridizing particle swarm optimization
with differential evolution for constrained numerical and engineering opti-
mization. Applied Soft Computing, 10:629–640, 2010.

[17] K. Mahadevana and P.S. Kannan. Comprehensive learning particle swarm
optimization for reactive power dispatch. Applied Soft Computing, 10:641–
652, 2010.

[18] M.E.H. Pedersen. Tuning & Simplifying Heuristical Optimization. PhD
thesis, School of Engineering Sciences, University of Southampton, Eng-
land, 2010.

[19] M.E.H. Pedersen and A.J. Chipperfield. Simplifying particle swarm opti-
mization. Applied Soft Computing, 10:618–628, 2010.

[20] J. Kennedy. The particle swarm: social adaptation of knowledge. In Pro-
ceedings of the IEEE International Conference on Evolutionary Computa-
tion, pages 303–308, Indianapolis, USA, 1997.

5

• Initialize each particle ~x ∈ Rn with a random position in the search-space:

~x ∼ U(~blo,~bup)

where ~blo and ~bup are the lower and upper boundaries of the search-space.

• Set each particle’s best known position to its initial position:

~p← ~x

• Initialize each particle’s velocity ~v ∈ Rn to random values:

~v ∼ U(−~d, ~d)

where ~d = |~bup −~blo|
• Initialize the swarm’s best known position ~g to the ~x for which f(~x) is lowest.

• Until a termination criterion is met, repeat the following:

– For each particle ~x in the swarm do the following:

∗ Pick two random numbers: rp, rg ∼ U(0, 1)

∗ Update the particle’s velocity ~v as follows:

~v ← ω~v + φprp(~p− ~x) + φgrg(~g − ~x)

where ω, φp, and φg are user-defined behavioural parameters.

∗ Bound the velocity, that is, for all dimensions i update vi:

vi ← Bound(vi,−di, di)

See figure 2 for the definition of Bound()

∗ Move the particle to its new position by adding its velocity:

~x← ~x+ ~v

∗ Bound the position, that is, for all dimensions i update xi:

xi ← Bound(xi, bloi , bupi
)

∗ If (f(~x) < f(~p)) then update the particle’s best known position:

~p← ~x

∗ If (f(~x) < f(~g)) then update the swarm’s best known position:

~g ← ~x

• Now ~g holds the best found position in the search-space.

Figure 1: PSO pseudo-code.

6

Problem Fitness PSO Parameters
Dimensions Evaluations S ω φp φg

2 400 25 0.3925 2.5586 1.3358
29 -0.4349 -0.6504 2.2073

2 4,000 156 0.4091 2.1304 1.0575
237 -0.2887 0.4862 2.5067

5 1,000 63 -0.3593 -0.7238 2.0289
47 -0.1832 0.5287 3.1913

5 10,000 223 -0.3699 -0.1207 3.3657
203 0.5069 2.5524 1.0056

10 2,000 63 0.6571 1.6319 0.6239
204 -0.2134 -0.3344 2.3259

10 20,000 53 -0.3488 -0.2746 4.8976
20 40,000 69 -0.4438 -0.2699 3.3950

20 400,000
149 -0.3236 -0.1136 3.9789
60 -0.4736 -0.9700 3.7904
256 -0.3499 -0.0513 4.9087

30 600,000 95 -0.6031 -0.6485 2.6475
50 100,000 106 -0.2256 -0.1564 3.8876
100 200,000 161 -0.2089 -0.0787 3.7637

Table 1: PSO parameters for various problem configurations. The practitioner
should select the PSO parameters where the dimensionality and allowed number
of fitness evaluations most closely match those of the optimization problem at
hand. For some problem configurations multiple parameters are listed as they
had almost the same optimization performance.

7

Problem Fitness MOL Parameters
Dimensions Evaluations S ω φg

2 400 23 -0.3328 2.8446
50 0.2840 1.9466

2 4,000 183 -0.2797 3.0539
139 0.6372 1.0949

5 1,000 50 -0.3085 2.0273
5 10,000 96 -0.3675 4.171
10 2,000 60 -0.2700 2.9708
10 20,000 116 -0.3518 3.8304
20 40,000 228 -0.3747 4.2373

20 400,000 125 -0.2575 4.6713
67 -0.4882 2.7923

30 600,000 134 -0.4300 3.0469
50 100,000 290 -0.3067 3.6223
100 200,000 219 -0.1685 3.9162

Table 2: MOL parameters for various problem configurations. The practitioner
should select the MOL parameters where the dimensionality and allowed number
of fitness evaluations most closely match those of the optimization problem at
hand. For some problem configurations multiple parameters are listed as they
had almost the same optimization performance.

8

Bound(x, l, u) =


l , x < l
u , x > u
x , else

Figure 2: Bounding function used in the PSO algorithm.

Meta-Optimizer

Optimizer

Benchmark Problems

Figure 3: The concept of meta-optimization. Another optimization method is
used as an overlying meta-optimizer for finding good behavioural parameters of
PSO (or MOL), which in turn is used to optimize benchmark problems.

Ackley f(~x) = e+ 20− 20 · exp
(
−0.2 ·

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
Griewank f(~x) = 1 + 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)

Penalized1

f(~x) = π
n

(
10 · sin2(πy1)

+
∑n−1
i=1 (yi − 1)2 ·

(
1 + 10 · sin2(πyi+1)

)
+ (yn − 1)2

)
+
∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =

 k(−xi − a)m , xi < −a
0 ,−a ≤ xi ≤ a
k(xi − a)m , xi > a

Penalized2
f(~x) = 0.1

(
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2 ·

(
1 + sin2(3πxi+1)

)
+(xn − 1)2 ·

(
1 + sin2(2πxn)

))
+
∑n
i=1 u(xi, 5, 100, 4), with u(·) from above.

QuarticNoise f(~x) =
∑n
i=1(i · x4

i + ri), ri ∼ U(0, 1)
Rastrigin f(~x) =

∑n
i=1

(
x2
i + 10− 10 · cos(2πxi)

)
Rosenbrock f(~x) =

∑n−1
i=1

(
100 · (xi+1 − x2

i)
2 + (xi − 1)2

)
Schwefel1-2 f(~x) =

∑n
i=1

(∑i
j=1 xj

)2

Schwefel2-21 f(~x) = max {|xi| : i ∈ {1, · · · , n}}
Schwefel2-22 f(~x) =

∑n
i=1 |xi|+

∏n
i=1 |xi|

Sphere f(~x) =
∑n
i=1 x

2
i

Step f(~x) =
∑n
i=1 (bxi + 0.5c)2

Table 3: Benchmark problems.

9

1e-009
1e-008
1e-007
1e-006
1e-005
0.0001
0.001
0.01
0.1

1
10

100

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Ackley

PSO
MOL

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

0 100000 200000 300000 400000 500000
F

it
ne

ss
Iteration

Griewank

PSO
MOL

1e-012
1e-010
1e-008
1e-006
0.0001

0.01
1

100
10000

1e+006
1e+008
1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Penalized1

PSO
MOL

1e-015

1e-010

1e-005

1

100000

1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Penalized2

PSO
MOL

10

100

1000

10000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

QuarticNoise

PSO
MOL

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Rastrigin

PSO
MOL

Figure 4: PSO and MOL optimization performance. Plots show the mean fitness
achieved over 50 optimization runs as well as the quartiles at intervals during
optimization.

10

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Rosenbrock

PSO
MOL

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

1e+006

1e+008

1e+010

0 100000 200000 300000 400000 500000
F

it
ne

ss
Iteration

Schwefel 1-2

PSO
MOL

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Schwefel 2-21

PSO
MOL

1e-010

1e-005

1

100000

1e+010

1e+015

1e+020

1e+025

1e+030

1e+035

1e+040

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Schwefel 2-22

PSO
MOL

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

1e+006

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Sphere

PSO
MOL

0.01

0.1

1

10

100

1000

10000

100000

1e+006

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Step

PSO
MOL

Figure 5: PSO and MOL optimization performance. Plots show the mean fitness
achieved over 50 optimization runs as well as the quartiles at intervals during
optimization.

11

Problem Initialization Search-Space Displacement δ
Ackley [15, 30] [−30, 30] -7.5
Griewank [300, 600] [−600, 600] -150
Penalized1 [5, 50] [−50, 50] 0
Penalized2 [5, 50] [−50, 50] 0
QuarticNoise [0.64, 1.28] [−1.28, 1.28] -0.32
Rastrigin [2.56, 5.12] [−5.12, 5.12] 1.28
Rosenbrock [15, 30] [−100, 100] 25
Schwefel1-2 [50, 100] [−100, 100] -25
Schwefel2-21 [50, 100] [−100, 100] -25
Schwefel2-22 [5, 10] [−10, 10] -2.5
Sphere [50, 100] [−100, 100] 25
Step [50, 100] [−100, 100] 25

Table 4: Initialization ranges, search-space boundaries, and displacement values
δ for the benchmark problems. Displacement is done by using an auxiliary
fitness function h(~x) = f(~x − δ) to avoid unintended attraction of PSO and
MOL particles to the zero-position which happens to be the optimal solution
for most of these problems.

Problem Mean Std.Dev. Min Q1 Median Q3 Max

P
SO

Ackley 9.36e-4 6.86e-4 3.98e-5 4.31e-4 8.1e-4 1.37e-3 3.41e-3
Griewank 5.4e-3 9.81e-3 1.15e-7 2.37e-5 7.03e-5 8.58e-3 0.04
Penalized1 1.48e-6 3.61e-6 1.18e-8 3.3e-7 7.91e-7 1.59e-6 2.6e-5
Penalized2 0.02 0.05 2.73e-6 1.41e-5 1.98e-4 0.01 0.3
QuarticNoise 12.93 0.79 10.19 12.53 12.94 13.55 14.52
Rastrigin 1.1 4.31 2.85e-6 2.71e-5 1.51e-4 9.26e-4 27.87
Rosenbrock 2.9e-3 3.89e-3 2.11e-5 3.69e-4 1.22e-3 3.52e-3 0.02
Schwefel1-2 0.17 0.26 5.67e-4 5.53e-3 0.05 0.25 1.2
Schwefel2-21 2.15e-3 2.85e-3 1.45e-5 4.14e-4 8.85e-4 2.29e-3 0.01
Schwefel2-22 5.55e-3 5.09e-3 1.85e-4 1.21e-3 3.79e-3 8.71e-3 0.02
Sphere 2.99e-6 4.5e-6 2.13e-7 9.32e-7 1.48e-6 3.12e-6 2.67e-5
Step 0 0 0 0 0 0 0

M
O

L

Ackley 7.32e-5 1.5e-4 5.45e-9 5.69e-7 5.42e-6 6.93e-5 8.6e-4
Griewank 1.51e-4 1.06e-3 0 2.5e-11 6.68e-9 4.16e-7 7.55e-3
Penalized1 2.05e-7 6.62e-7 7.17e-11 3.67e-9 2.59e-8 1.25e-7 4.63e-6
Penalized2 5.3e-6 1.07e-5 6.43e-12 1.06e-7 5.24e-7 5.57e-6 5.7e-5
QuarticNoise 12.45 0.63 10.31 12.09 12.56 12.85 13.74
Rastrigin 2.41e-6 9.74e-6 0 9.64e-11 7.18e-9 2.81e-7 5.53e-5
Rosenbrock 8.89e-5 4.84e-4 3.27e-16 3.42e-9 6.87e-7 3.16e-5 3.47e-3
Schwefel1-2 1.21e-3 3.38e-3 2.63e-10 2.58e-7 3e-5 5.78e-4 0.02
Schwefel2-21 2.37e-4 4.34e-4 1.02e-10 8.08e-7 2.04e-5 2.36e-4 1.77e-3
Schwefel2-22 0.1 0.7 3.69e-8 3e-6 9.07e-5 7.39e-4 5
Sphere 2.6e-6 3.76e-6 1.59e-9 4.38e-7 1.01e-6 2.85e-6 1.82e-5
Step 0 0 0 0 0 0 0

Table 5: Optimization end results for PSO and MOL when the benchmark
problems have 40 dimensions and 500,000 fitness evaluations have been per-
formed.

12

	Introduction
	Particle Swarm Optimization
	MOL Variant

	Meta-Optimization
	Example Usage
	Conclusion
	Source-Code

